
A STUDENT MODEL FOR OBJECT-ORIENTED DESIGN AND

PROGRAMMING

Fang Wei, Sally H. Moritz, Shahida M. Parvez and Glenn D. Blank
CSE Department
19 Packard Lab

Lehigh University
Bethlehem, PA 18015

 (610)-758-4867, (610)-758-4605
faw2@lehigh.edu, sgh2@lehigh.edu, smp9@lehigh.edu, gdb0@lehigh.edu

ABSTRACT
“Objects-first” is an increasingly popular strategy for teaching object-
oriented programming by introducing the concepts of objects, classes, and
instances before procedural elements of a programming language. Learning
object-oriented design and programming is a challenging task for many
beginning students. We represent CIMEL ITS, which is an intelligent
tutoring system that provides one-on-one tutoring to help beginners learn
object-oriented analysis and design, using elements of UML before
implementing any code. We also present a three-layered Student Model
which supports adaptive tutoring by inferring the problem-specific
knowledge state from student solutions, the historical knowledge state of the
student and cognitive reasons about why the student makes an error.

1. MOTIVATION

Learning object-oriented programming is a challenging task for many beginning
students, let alone object-oriented design. Research by Ratcliffe [19] has shown that
lack of comprehension expressed by first year computer science students is a rising
concern in academia. McCracken et al. [14] performed a study that suggested that in
UK and USA, approximately 30% of students do not understand the basics.

The first few lessons in object-orientation are rich and complex, so that many
students get confused, and may withdraw from the course. Many students continue
repeating similar errors after teachers tell them the right answers. They often struggle
to solve problems after an instructor explains what they need to know. Meanwhile
students having difficulties may not want to admit they are having problems or may
have difficulties explaining their problems to an instructor. These situations happen
for many reasons: 1) It is difficult to explain the problem from the student’s
perspective—one must understand what the student knows and doesn’t know. 2) It is
hard to know about let alone overcome preconceived ideas of many students. For
example, some students come into the course with experiences in a procedural
programming language, such as BASIC, which may actually inhibit learning object-

oriented design and programming. 3) It is hard to trace how many times a student
commits similar errors and so observe repeating problem solving patterns. 4) It is hard
to remedy a student’s deficient problem solving patterns and encourage sound
ones—people sometimes refuse to abandon their stubborn ways. 5) It is hard to take
all common errors and learned knowledge into account to analyze each individual
student. 6) An instructor may not know who is having difficulties until it is too late,
may not be able to tell why the student is having these difficulties, may not be able to
convince the student to seek help, and may simply not have enough time to look into
every student’s needs in a large class.

Reiser et al. [20] reported that students working with private tutors can learn
given material four times faster than students who attend traditional classroom
lectures, study textbooks and work on homework alone. Bloom [6] also reported that
students have a better grasp of material working with a private tutor than attending
traditional classroom lectures. When a qualified private human tutor is not available,
the next best option is an intelligent tutoring system. Anderson and Skwarecki [3]
reported that an ITS is a cost-effective means of one-on-one tutoring that provides
novices with the individualized attention needed to overcome learning difficulties.
Intelligent tutoring systems are not only being used in academia to augment classroom
teaching but have also penetrated various industries where companies are using ITSs
to train employees to perform their job functions.

As a result, ITSs have been built for various domains such as medicine,
engineering, public services, computer science, etc. The application of ITS in
computer science has been limited to tutoring database design and specific procedural
aspects of programming languages such as Java, C++, LISP and Pascal, and have not
kept up with the current technology focus of object-oriented design and
programming[21][15][13][20][23].

To help students learn object-oriented design and programming we present
CIMEL ITS, an intelligent tutoring system that provides one-on-one tutoring to help
beginners with various learning styles in a CS1 course. The ITS supports a design-
first curriculum, which subsumes an objects-first pedagogical approach. This paper
focuses particularly on a three-layered Student Model in the CIMEL ITS framework
which provides adaptive tutoring by inferring the problem-specific knowledge state
from student solutions, the historical knowledge state of the student and cognitive
reasons that the student makes an error.

2. A “DESIGN-FIRST” CURRICULUM

“Objects-first” is an increasingly popular strategy for teaching object-oriented
programming, by introducing the concepts of objects, classes, and instances before
procedural elements of a programming language [12]. It exposes students to the
concepts of objects, instances and classes early in the course, using integrated
development environments (IDEs) such as BlueJ and DrJava, which help students
practice using objects and easily visualize the results of their work.

While objects-first is effective in teaching key concepts of object-oriented
programming, it does not go far enough in helping students learn problem solving
skills. We have developed a curriculum that emphasizes “design-first.” Students still
learn object concepts very early in the curriculum, but they also learn elements of
UML to help them think about a problem before coding. They are introduced to
programming from a software engineering point of view, and are invited to compare
the development process to building a house or car.

While these skills are important in teaching students how to solve a new
problem, they also represent additional, complex concepts that students need to learn.
We have built new tools to help. One of those tools is CS1 multimedia courseware
developed by the CIMEL (Collaborative, Constructive, Inquiry-based Multimedia E-
Learning) project. CIMEL multimedia introduces the breadth of computer science,
including introductory concepts in Java and object-oriented programming,
complementing a textbook, The Universal Computer: Introducing Computer Science
with Multimedia [4]. It uses many techniques including audio, video, text, animation,
JUST THE FACTS summaries, and interactive, constructive and inquiry-based learning
exercises to reach students with a wide variety of learning styles (a web-based demo
and documentation is available at www.cse.lehigh.edu/~cimel). A comparison of
students who used the CIMEL multimedia and BlueJ with students who used Barnes
and Kölling’s textbook and BlueJ showed the students learned much better with
multimedia [5].

The IDE which students use in the course must also support the curriculum. It
should be easy to learn, allow for quick experimentation, and provide an interface in
which students can design as well as code their solutions. We chose Eclipse, an open-
source IDE widely used by developers in both academia and industry. We also added
two “plug-ins,” or extensions to the basic environment: Omondo UML, which allows
students to enter class diagrams and generate code stubs from their design, and
DrJava, a beginner’s IDE developed at Rice University [2], which provides an
interactive interface in which students can enter and execute code one line at a time.

However, the IDE merely provides the environment. It does not offer students
assistance while they are working on a problem. While providing a human tutor to
every student who needs one is not practical, an intelligent tutoring system (ITS) that
offers customized help within the IDE could fill the gap. We therefore propose
CIMEL ITS, an ITS that interfaces with both the Eclipse IDE and CIMEL to give
students customized, timely assistance as they are studying the material and applying
their knowledge to specific problem solving tasks.

The rest of this paper will describe the overall architecture of the CIMEL ITS
and then focus on the Student Model. The Student Model tracks the student’s work
and develops a picture of the student’s knowledge state. An accurate model of what
the student knows and doesn’t know is crucial in presenting instruction tailored to the
student’s needs. Determining this knowledge state requires analyzing the student’s
behaviors on multiple levels.

3. CIMEL ITS ARCHITECTURE

Hartley and Sleeman [10] proposed three components of an ITS: an expert
module which contains the domain knowledge of the system, a student module which
models student knowledge and behavior, and a pedagogical module which chooses
appropriate teaching strategies. These three components work within the framework of
a user interface that presents content and interacts with the learner [8]. From this
starting point, we developed an architecture for CIMEL ITS, shown in figure 1.

There are four components which comprise the CIMEL ITS itself. The
Curriculum Model, at the heart of the architecture, represents the knowledge of the
first few lessons in a design-first CS1 course. It is organized as a Curriculum
Information Network, or CIN, which links concepts together to show relationships
between them. For example, a concept may be identified as having one or more
prerequisite concepts, and it may also be a component of another, higher-level

concept. A difficulty measure is also assigned to each concept within the CIN. The
Expert Evaluator, the Student Model and the Pedagogical Agent in the CIMEL ITS
refer to the CIN to tie the student’s learning activities and state of knowledge to the
curriculum.

Figure 1. Architecture of CIMEL ITS

The Expert Evaluator interfaces with the Eclipse IDE through a plug-in. It
observes the student’s work step by step in both the object diagram interface and the
code interface of Eclipse, and compares each step to its own solution(s) to the current
problem. When a specific error is identified, it is linked to a concept within the CIN,
and along with the recommended solution, is passed to the Student Model.

The Student Model maintains a model of the student’s current knowledge
state based on information from both CIMEL and the Expert Evaluator. From CIMEL,
the Student Model gets input on individual student performance based on exercise and
quiz data from the object-oriented contents. From the Expert Evaluator, it receives
information on both errors made by the student (as described above), and problems
which the student completes successfully. The Student Model then performs a
diagnosis based on the history of the student’s performance to determine the reasons
for the student’s errors and where there are gaps in his or her knowledge.

The Pedagogical Agent provides feedback to the student and tutoring when he
needs help. It consists of a feedback network and tutoring strategies which may be
represented by distinct agents. The feedback network is similar to CIN; it also contains
feedback for each concept in the domain knowledge. Feedback is assigned a numerical
level indicating if the feedback is basic or advanced. For example, the feedback
consisting of concept definitions will be assigned level 1. The tutoring strategies under
consideration are the traditional tutoring strategy in which an agent plays the role of a
tutor and variations of cooperative learning strategies [7]. The “learning by disturbing”
strategy has a traditional tutor agent and a companion agent that attempts to test the
student’s knowledge by misleading him [1]. The “learning by teaching” strategy also
has a traditional tutor agent and a companion agent who learns along with the student
[17].

When the Student Model indicates that the student needs help, the Pedagogical
Agent selects the tutoring strategy and the feedback based on the student profile
maintained in the Student Model. Next, the Pedagogical Agent interacts with the

student to provide feedback / tutoring. Depending upon the strategy chosen, the
student might interact with one or more agents. The traditional tutoring model consists
of a single agent in the role of tutor while other strategies require one agent as a tutor
and another as a companion / adversary. The feedback consists of explaining the basic
concepts and relationships between various concepts, and referring the student to
multimedia, relevant websites and ultimately to a human tutor.

The CIMEL ITS can interact with students either through CIMEL multimedia or
the Eclipse IDE, each of which initiate different flows of control through the ITS
architecture. The student can learn about object-oriented design and Java
programming from CIMEL multimedia. CIMEL records the student’s behaviors on
the quizzes and exercises into a database. The Student Model uses this data to infer the
student’s level of knowledge. When the student has difficulties within CIMEL, the
Pedagogical Agent[s] may intervene. Possible tutoring actions include a brief
explanation of concepts that the student missed or a menu of materials that the student
should review. Another possibility is walking the student through a multimedia
exercise step by step, making sure the student understands how to do it and
highlighting the important concepts. The Pedagogical Agent updates the Student
Model with information about the instruction provided.

Another flow of control begins with the Eclipse IDE. The Expert Evaluator
observes the student as he enters his design or programming solution, converts the
student’s solution to a representation language and compares the expert’s solution with
that of the student and provides the results to the Student Model. The Expert Evaluator
assesses what are right answers and errors in the student’s solution and the concepts
tied to them. After receiving the input from the Expert Evaluator the Student Model
performs a diagnosis based on the input and the history of students’ records and
provides the diagnosis results to the Pedagogical Agent. The Student Model considers
what the current state of the student is (struggling or not), what the student needs to
know and why the student made those errors. The Pedagogical Agent gives proper
instructions to the student based on the diagnosis results and the history of the
instructions given to the student from the Student Model. The Expert Evaluator,
Student Model and Pedagogical Agent each consult with Curriculum Model to
perform their work. From the learner’s perspective, if the learner requests help, or
appears to be struggling, the Pedagogical Agent may intervene based on both the
student’s current behavior and his previous history as represented in the Student
Model. On successful completion of the assignment, the student receives positive
feedback from the Pedagogical Agent.

4. THREE-LAYERED STUDENT MODEL ARCHITECTURE

The Student Model maintains a model of a student’s current knowledge state
which allows more intelligent pedagogical decisions and actions to happen. After the
Expert Evaluator figures out what is wrong in the student’s solution the Student Model
figures out why those errors are made, which is essential for the Pedagogical Agent to
choose the proper instruction action. The Student Model provides fundamental
information to understand the specific way the student tries to solve the problem.
Student Models have been studied since the beginning of ITS research. Many
researchers argue that the main purpose of a Student Model is to guide pedagogical
decision-making. Ohlsson [16] called the student modeling problem “cognitive
diagnosis.”

To help students learn object-oriented design and programming we present a
three-layered Student Model which provides adaptive tutoring to each student. The
architecture of the Student Model is shown in Figure 2. The Problem-domain
Knowledge Model infers how well the student understands relevant concepts, from
student solutions annotated by the Expert Evaluator. The Knowledge Model infers the
historical knowledge state of the student from a sequence of student solutions to the
same problem or multiple problems. Finally, the Cognitive Model infers more general
problem solving patterns and antipatterns from student work and errors. The three
levels can then provide different kinds of information to the Pedagogical Agent about
where the student needs help.

Figure 2. Architecture of the Three-Layered Student Model in CIMEL ITS

4.1 The Cognitive Model

The Cognitive Model (CM) recognizes problem solving patterns that the student
is using. During the past 40 years many Student Models attempted to select the
appropriate level of advice and explanations, determine readiness for advancement and
dynamic planning of the student’s curriculum, and give the student feedback on his or
her current performance and progress through the curriculum [11]. Few Student
Models have incorporated a CM into their approach to find possible reasons of errors
or characterize the problem solving patterns that the student is using. Mitrovic et al.
[15] argued that feedback with only the correct answer would be sufficient to help the
student when he makes an error. But quite often when the student sees the right
answer he doesn’t know what it means and why it is correct, especially in object-
oriented design and programming. So the student’s problems are likely to recur. Tu et
al. [22] used a mapping technique to map the reason with a specific error and
maintained an information map which had all the hard coded mappings. This
approach doesn’t fit problems in which the reason of an error relates to the wide
variety of contexts in which the error is.

Gürer [9] incorporated three CMs to analyze a student’s problem solving
performance into her Student Model for tutoring physics problems. The experimental
results show that her CMs are helpful in diagnosing the student’s solution. The
“Knowledge type” model determines whether the student is using preconceived
notions or actual physics knowledge. The “Focus” model determines whether the
student only focuses on the problem’s surface features or on physics principles.
Finally, the “Approach” model determines whether the student uses a top-down
approach or bottom-up approach. Physics problems are more procedurally oriented
than object-oriented problem solving. Solving techniques for physics problems
involve finding useful equations for given facts and deducting new facts underneath
the given facts. Hence the “Focus” model is not pertinent to infer useful cognitive
reasons of novices’ errors in object-oriented problems because it is a procedural
problem solving pattern. We observed that students who have past experience with
procedural programming such as BASIC often call a method without putting object
name and dot operator before the method’s name. The reason is the student incorrectly
applied procedural techniques he learned in a prior experience to the new object-
oriented domain, which makes it harder remember object-oriented concepts. So the
“Knowledge type” model is applicable to object-oriented design and programming.
The “Approach” model can also be used in object-orientation because the top-down
decomposition is a rational problem solving strategy.

The CM can consist of problem solving patterns/antipatterns. As in the design
patterns literature, experts know that there are patterns of problem solving that are
effective, high-quality solutions to recurring problems while antipatterns produce
ineffective, low-quality solutions or none at all. Patterns are often non-obvious to
beginners; antipatterns may often seem more obvious but turn out to be misleading
blind alleys. We would like the problem solving patterns of a student to be sound
which means the student can solve the object-oriented problems correctly and
efficiently because of the problem solving patterns he is using. But students often use
antipatterns of problem solving which causes inefficient and even wrong solutions.

 “Hacking” is a common antipattern of novices. “Hacking” has three forms: “No
Design,” “Not Finish Design,” and “Not Apply Design.” They determine whether the
student starts to write code without doing any design, without finishing design and not
applying the design he made respectively. We observed the three forms of “Hacking”
quite often among novice students when they first solve object-oriented problems. We
incorporate “Hacking” in the CM to emphasize that students must finish design
completely first and then do coding from the design.

 “Analogy” is useful in general problem solving, and especially object-oriented
design. The analogy pattern has three cases: “If Analogy,” “Right Analogy,” and
“Analogy Adaptation.” “If Analogy” determines whether the student used analogy by
copying existing design or code of classes in his solution. “Right Analogy”
determines whether the student makes appropriate analogies between classes. Only
similar classes can be candidates for analogy. “Analogy Adaptation” determines
whether the student adapts the copied design or code into the proper class. For
example there are three similar classes, Circle, Square and Triangle in project
“Shape.” The Square Class has a draw method that draws a square object on a canvas.
Students are requested to create a draw method for the Circle Class. The right pattern
for students is to copy the draw method in the Square Class instead of coding from
scratch.

We incorporate “Knowledge type”, “Approach”, “Hacking”, and “Analogy”
models, into the CM. They represent and diagnose different problem solving patterns
and antipatterns for object-oriented design and programming problems. The CM
enables the Pedagogical Agent to remedy a student’s deficient problem solving
antipatterns and encourage sound ones.

4.2 Other Knowledge Models

The Problem-specific Knowledge Model (PKM) maintains a student’s
knowledge state and his solution for each question. A question can be an exercise or a
quiz in the CIMEL multimedia or a programming exercise in the Eclipse IDE. The
PKM specifies how the student’s knowledge state for the question is tied to CIN
(Curriculum Information Network) in terms of concepts he knows and doesn’t know.
Each concept is associated with a probabilistic value to show how well the student
knows the concept and a time stamp to show when the learning action about the
concept happens. The PKM helps to maintain a history of when, what and how well
the student learns on each question. The history enables tracing how many times the
student commits similar errors and figuring out the student’s repeating problem
solving patterns. PKM uses a probabilistic Bayesian network to represent how well
student knows the CIN concepts.

The Knowledge Model (KM) maintains a history of changes in the student’s
general conceptual knowledge. It generalizes an overall student’s knowledge state
from what observed in the PKM, by tying it to CIN in terms of concepts he knows and
doesn’t know. The KM helps to maintain a history of learning effect of the student.
This history enables explaining the problem from the student’s perspective by
understanding what the student knows and doesn’t know. We can also get a learning
effect/time curve of each student to understand the difficulties students are having for
future research purposes.

The Common Knowledge Model (CKM) maintains a common knowledge state
inferred from all students. The common knowledge state is a cross reference between
common errors and concepts, problem-solving strategies or other reasons that lead to
these errors. The CKM can provide hints to the CM, which are the popular reasons
that tied to the same error made previously by other students.

4.3 Flow of Control in the Student Model

The PKM receives student performance data from the CIMEL multimedia and
the Expert Evaluator in the Eclipse IDE. In CIMEL multimedia the student
performance data consists of student’s performance on each quiz or exercise. In the
Eclipse IDE the student performance data includes problem presented to the student,
the student’s solution, the expert’s solution, the CIN concepts used to create the expert
solution, and the gaps between the expert and student solutions as identified by the
expert evaluator. From the data the PKM infers concepts for each question the student
learns and how well he knows them. Each concept in the inferred results has a time
stamp and a probabilistic value and associates to one question. All concepts are
organized according to the CIN. PKM also measures cognitive measurement flags
such as IfDesignFirst for the “No Design” antipattern. When the student starts to write
code without doing any design in Eclipse, IfDesignFirst is set to 1. Cognitive
measurement flags also associate with a time stamp. The problem-specific
known/unknown concepts along with the cognitive measurement flags are sent to the
KM.

The KM calculates how well the student knows all concepts in the CIN from the
input of the PKM. Each concept in the result has a probabilistic value and a time
stamp. These concepts comprise the student’s knowledge state along his learning
history. If we find a prerequisite concept with the newest time stamp for the missing
concepts in the student’s solution has very low probabilistic value, the possible reason
for the student’s error can be the student doesn’t know the prerequisite. The KM
records the cognitive measurement flags from the PKM to keep track of the progress
on students’ problem solving strategies. The unknown prerequisites and current
cognitive measurement flags are sent to the CM to let it infer the reasons for the
student’s error.

The CM has three sources of input, initial stereotype [18], “unknown”
prerequisites, and popular reasons among students for the error in the solution along
the history. The initial stereotype is (a) initial knowledge level (novice, beginner,
intermediate and advanced) (b) computing language experience (such as Basic). The
Cognitive Model directly obtains the initial stereotype from the student when he first
accesses CIMEL ITS. The “unknown” prerequisites and the cognitive measurement
flags are from the Knowledge Model. The popular reasons among students for the
error along the history are from the CKM. The CM synthesizes and analyzes all the
inputs to get cognitive reasons of the error. These reasons are incorporated into the
CKM finally.

4.4 A Concrete Example

The first exercise in which students work with objects presents a group of classes
which define shapes: circle, square, and triangle. The class diagram is given in the
EclipseUML plug-in. Students create instances of these shapes, which they see drawn
on a canvas. They then manipulate the shapes by calling methods to move them or
change their size or color. Each exercise specifies exactly what the student is to do.
For example, an exercise may require the student to create a square, change its color to
magenta, and move it 100 pixels right and 20 pixels down from its initial location.

Suppose the student is working on the second step of this problem: changing the
square’s color to magenta. To formulate a correct solution, the student would observe
that there is a method called changeColor, which has one parameter, a String that
specifies the new color. Next, the student must call changeColor for the instance of
Square he has already created. The complete correct code would be:

Square s = new Square();
s.changeColor (“magenta”);
Now, suppose the student enters this solution:
Square s = new Square();
changeColor(“magenta”);

The Expert Evaluator would recognize that the second line is in error, and would pass
this information to the Student Model:

Problem presented to the student;
Student solution: changeColor(“magenta”);
Correct solution: s.changeColor(“magenta”);
CIN clause: Comp(invokeMethod: nameObject, period, methodName,

parameter-list)
Missing: nameObject, period
The Student Model interprets what this error tells us about the student. Why did

the student make this particular mistake? The reason could be any one of these:

1. The student made a typographical error.
2. The student doesn’t remember the syntax of calling methods.
3. The student doesn’t understand the concept that non-static methods are called

for a specific instance of a class.
4. The student has misconception that he is programming in a procedural

language such as BASIC.
5. The student doesn’t understand that methods are how object behaviors are

implemented in Java (a deeper concept than #3 – WHY non-static methods are
called for a specific instance).

These five reasons reflect five different levels of understanding. The Student
Model looks at the student’s performance so far for clues as to which reason is most
likely the actual cause of the error. How many similar exercises has the student
already completed? What was his performance on those? What related concepts has
the student already studied, and how deeply do we believe the student understands
them?

Let us suppose that the student has completed three other exercises which
included the task of calling a method for an instance. In those exercises, the student
committed similar errors twice. The student was given reminders on the syntax of
calling a method, and in one case was given a brief review of the concept of
manipulating individual instances through calling methods. The student had viewed
the section in CIMEL related to calling methods, and did well on the exercises at that
time. The PKM (Problem-specific Knowledge Model) reflects a probability that the
student understands the concept. However, if this is the third time the student has
made this same error, and was recently given a brief review of the concept, the KM
decides that the student probably does not understand the prerequisite concepts of
calling methods.

If a student continually tries to call a method without an instance it may be
because the student has the misconception that he is programming in a procedural
language such as BASIC. Students having prior experience with a procedural
programming language tend to have the misconception which is making it more
difficult for him to grasp object concepts. The Cognitive Model’s “Knowledge type”
pattern infers that a misconception is the main reason that the student keeps repeating
the error.

This decision is now used in two ways. First, the verdict, along with the
information sent by the Expert Evaluator, is passed by the CM to the Pedagogical
Agent. Second, it is used to update all components in the Student Model to reflect the
change in our estimate of the student’s knowledge of the concept. In this case, the
Student Model records that the student understands the concept of calling methods and
with only a low certainty. The Student Model also records the error, along with
general information about the exercise, in a history of the student’s completed work.

5. CONCLUSION AND FUTURE WORK

Learning object-oriented design and programming is challenging for novices.
Many students have learning difficulties which cannot be entirely solved by teachers.
To help student learning, we have designed an ITS which works through both the
CIMEL multimedia and the Eclipse IDE. The Student Model will help the ITS
determine which concepts and operations a student understands so that he or she can
apply them in design and programming problems. Our three-layered Student Model
provides a more accurate profile of a student so that the ITS can support adaptive

tutoring. It infers the problem-specific knowledge state from a student’s work, the
historical knowledge state of the student, and cognitive reasons that the student makes
an error. A critical component of the Student Model is the Cognitive Model. It
represents and diagnoses different general problem solving patterns and antipattern,
such as “Knowledge type,” “Approach,” “Hacking,” and “Analogy”, which
characterize the problem solving strategies that the student is using.

We plan to refine the cognitive model from student data and continue developing
details of the Student Model. We will have a working prototype of CIMEL ITS
including the Student Model by the summer of 2005. This will allow us to use CIMEL
ITS to augment CS1 courses in the Fall 2005 semester, and to gather experimental
data on the effectiveness of CIMEL ITS and the Student Model.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation
under Grants No. EIA-0087977 and 0231768 and PITA (Pennsylvania Infrastructure
Technology Association).

7. REFERENCES

[1] Aïmeur, E. and Frasson, C. Analyzing a New Learning Strategy According to
Different Knowledge Levels. Computers in Education, vol. 27, no. 2, 1996, pp.
115-127.

[2] Allen, Eric, Cartwright, Robert, and Stoler, Brian. DrJava: A Lightweight
Pedagogic Environment for Java. In Proceedings of the SIGSCE Conference on
Computer Science Education, March, 2002.

[3] Anderson, J.R. and Skwarecki, E..The Automated Tutoring of Introductory
Computer Programming. Communications of the ACM, vol. 29, September 1986,
pp 842-849, ACM Press.

[4] Blank, G. D., Barnes, R. F. and Kay, E. J.. The Universal Computer: Introducing
Computer Science with Multimedia (McGraw-Hill/Primis, 2003/2004). Sample
material at www.cse.lehigh.edu/~glennb/um/ and http://cimel.cse.lehigh.edu.

[5] Blank, G. D., Pottenger, W. M., Sahasrabudhe, S. A., Li, S., Wei, F., and Odi, H.
Multimedia for computer science: from CS0 to grades 7-12, EdMedia, Honolulu,
HI, June 2003.

[6] Bloom, B. S.. The 2 Sigma Problem: The Search for Methods of Group Instruction
as Effective as One-to-One Tutoring. Educational Researcher, vol. 13, pp. 3-16,
1984.

[7] Chan T. W. and Baskin A. B.. Learning Companion Systems. In Intelligent
Tutoring Systems: At the crossroads of Artificial Intelligence and Education
(Edited by Frasson, C. and Gauthier, G.), Chap 1. Ablex, N.J., 1990.

[8] Dag, F. and Erkan, K.. Realizing of Optimal Curriculum Sequences for a Web
Based General Purpose Intelligent Tutoring System, The IJCI Proceedings (ISSN
1304-2386, vol. 1, No 1, July 2003, International XII. Turkish Symposium of
Artificial Intelligence and Neural Networks (TAINN’2003).

[9] Gürer, W. D. (1993) A Bi-level Physics Student Diagnostic Utilizing Cognitive
Models for an Intelligent Tutoring System, PhD Dissertation

[10] Hartley, J.R. & Sleeman, D.H. Towards more intelligent teaching systems.
International Journal of Man-Machine Studies 2, 1973, pp. 215-236.

[11] Katz, S., Lesgold, A, Eggan, G & Gordin, M. (1992). Modelling the student in
Sherlock II. International Journal of Artificial Intelligence in Education 3(4):495-
518.

[12] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J., The BlueJ System and its
Pedagogy, Journal of Computer Science Education, Special issue on Learning and
Teaching Object Technology, vol. 13, no. 4, Dec 2003.

[13] Kumar, A.. Model-Based Reasoning for Domain Modeling in a Web-Based
Intelligent Tutoring System to Help Students Learn to Debug C++ Programs, 6th

International ITS Conference, Biarritz, France and San Sebastian, Spain, June
2002.

[14] McCracken M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Yifat Kolikant,
Y., Laxer, C., Thomas, L., Utting, I., Wilusz, T., A Multi-National, Multi-
Institutional Study of Assessment of Programming Skills of First-Year CS
Students. In Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education, December 01, 2001, Canterbury, UK

[15] Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B.. Constraint-Based Tutors:
A Success Story. In Proceedings of the 14th Industrial and Engineering
Applications of AI and Expert Systems Conference (IEA/AIE-2001), Budapest,
Hungary, June 2001,pp. 931-940.

[16] Ohlsson, S. (1986) Some Principles of Intelligent Tutorinig, Instructional Science,
Vol.14, pp. 293-326.

[17] Palthepu, S., Greer, J., and McCalla, G.. Learning by Teaching. The Proceedings
of the International Conference on the Learning Sciences, AACE, 1991.

[18] Prentzas, J., Hatzilygeroudis, I., and Garofalakis, J., A Web-Based Intelligent
Tutoring System Using Hybrid Rules as Its Representational Basis. The 6th

International Conference, ITS 2002, Biarritz, France and San Sebastian, Spain,
June 2002, Proceedings, pp. 119-128.

[19] Ratcliffe, M. B.. Improving the Teaching of Introductory Programming by
Assisting the Strugglers. The 33rd ACM Technical Symposium on Computer
Science Education, Cincinnati, USA, March, 2002.

[20] Reiser, B.J., Anderson, J.R., Farrell, R.G.. Dynamic Student Modeling in an
Intelligent Tutor for LISP Programming, Proc. of the Eighth Int'l Joint Conf. on
Artificial Intelligence, pp. 8-14, Los Angeles, 1985.

[21] Sykes, E.R. and Franek, F.. A Prototype for an Intelligent Tutoring System for
Students Learning to Program in Java. In Advanced Technology for Learning, vol.
1, no. 1, 2004.

[22] Tu, L., Hsu, W. and Wu, S.. Cognitive Student Model – An Ontological
Approach. International Conference on Computers in Education (ICCE'02)
December 03 - 06, 2002, Auckland, New Zealand

[23] Woolf, B. and McDonald, D., Human-Computer Discourse in the Design of a
PASCAL Tutor, Proceedings of Conference on Human Factors in Computing
Systems, Boston, MA, 1983.

